

JOURNÉE DOCTORALE 2017

Acoustic noise reduction and speech enhancement via particle swarm optimization

Sofiane Fisli^{1,2}, Mohamed Djendi¹ and Abderezzak Guessoum¹

¹University of Blida 1,Signal Processing and Image Laboratory (LATSI), Blida, Algeria

² University 8 Mai 1945 of Guelma , Laboratoire d'Automatique et Informatique de Guelma, Guelma, Algeria

Abstract- This paper addresses the problem of acoustic noise cancellation by adaptive filtering algorithms. To solve acoustic noise reduction and speech enhancement problems, we propose a modified predator-prey particle swarm optimization (MPPPSO) to design adaptive noise canceling based on swarm intelligence heuristic search.

The steady-state error of the predator-prey particle swarm optimization (PPPSO) algorithm is very large for a large filter length and non-stationary input. The MPPPSO can improve the previous PPPSO algorithm when a large filter length is used. The MPPPSO algorithm shows significant improvement in the System mismatch (SM) and Output signal-to-noise ratio (SNR) values. We present simulation results of the MPPPSO algorithm that confirm the superiority and good performance in comparison with the PPPSO and the normalized least mean square.

Mots Clés : Acoustic Noise Cancellation; Particle Swarm Optimization; predator-prey PSO; Output signal-to-noise ratio (SNR); System mismatch (SM).

Références bibliographiques

- Loizou, P.C.: "Speech Enhancement: Theory and Practice, 2nd edn. CRC Press and Taylor and Francis Group, Boca Raton ,2013.
- [2] P. Kunche and K.V.V.S. Reddy, "Metaheuristic Applications to Speech Enhancement", SpringerBriefs in Speech, Springer International AG, avril 2016.
- [3] R. Eberhart, and J. Kennedy, "A New Optimizer Using Particles Swarm Theory", Proc.Sixth International Symposium on Micro Machine Human Science (Nagoya, Japan), IEEE Service Center, Piscataway, NJ, 1995
- [4] C. Y. Chang, D. R. Chen, "Active Noise Cancellation Without Secondary Path Identification by Using an Adaptive Genetic Algorithm", *IEEE* Transactions on Instrumentation and Measurement, vol. 59, no. 9, pp. 2315-2327, Sept 2010.
- [5] M.Djendi, P.Scalart, A.Gilloire, "Analysis of two-sensors forward BSS structure with post-filters in the presence of coherent and incoherent noise", SpeechCommun.55(10) 975–987,2013.
- [6] Higashitani M, Ishigame A, Yasuda K. "Particle swarm optimization considering the concept of predator-prey behavior". In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation. Vancouver, BC.
- [7] Bendoumia R, Djendi M. Two-channel variable-step-size forward- and backward adaptive algorithms for acoustic noise reduction and speech enhancement.Signal Process 2015;108(March):226–44.
- [8] Widrow B, Goodlin RC, et al. Adaptive noise cancelling: principles and applications. Proc IEEE 1975;63(December):1692–716.